It is time we explore the well-engineered deep submicron CMOS technologies to address the challenging criteria of these emerging low-power and high-speed communication digital signal processing chips. The performance of many applications as digital signal processing depends upon the performance of the arithmetic circuits to execute complex algorithms such as convolution, correlation, and digital filtering. Fast arithmetic computation cells including adders and multipliers are the most frequently and widely used circuits in very-large-scale integration (VLSI) systems. The semiconductor industry has witnessed an explosive growth of integration of sophisticated multimedia-based applications into mobile electronics gadgetry since the last decade. However, the critical concern in this arena is to reduce the increase in power consumption beyond a certain range of operating frequency. Moreover, with the explosive growth, the demand, and the popularity of portable electronic products, the designers are driven to strive for smaller silicon area, higher speed, longer battery life, and enhanced reliability. The XOR-XNOR circuits are basic building blocks in various circuits especially arithmetic circuits (adders & multipliers), compressors, comparators, parity checkers, code converters, error-detecting or error-correcting codes and phase detector.
Uyemura Introduction To Vlsi Circuits And Systems 18.pdf
The full adder (MajFA3) is based on MOSCAP Majority Not function with only static CMOS inverter as shown in Figure 14(b). Simulation results illustrate that the reported adder circuits having low PDP works efficiently at low voltages [41]. Outputs of the circuit will be connected to power supply or ground and therewith, the circuit has good driving capability. These inverter-based full adders are a suitable structure for the construction of low-power and high-performance VLSI systems. 2ff7e9595c
Comments